SimVascular_report_PostProcess/functions.py

222 lines
8.6 KiB
Python
Raw Normal View History

#!/usr/bin/env python
"""
Created on Thu Jul 16 15:08:27 2020
@author: Aloma Blanch
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
from math import floor
from statistics import mean
from scipy.signal import find_peaks
def cycle(folder,dt,save_path):
pressure = np.loadtxt(folder + '/PHistRCR.dat',skiprows=2)
N_ts = pressure.shape[0]
T = round(dt*N_ts,3)
time = np.linspace(0,T,N_ts)
# Find peaks, keep only the maximums
peaks, _ = find_peaks(pressure[:,-1])
idx = np.where(pressure[peaks,-1] >= np.mean(pressure))
peaks_loc = peaks[idx]
P_peaks = pressure[peaks,-1][pressure[peaks,-1] >= np.mean(pressure)]
# Rmove the multiple picks found in the same location
idx_del = []
t_pk_loc = time[peaks_loc].tolist()
peak_tdiff = [t_pk_loc[n]-t_pk_loc[n-1] for n in range(1,len(t_pk_loc))]
for i in range(0,len(peak_tdiff)):
if peak_tdiff[i]<= dt*10:
idx_del.append(i)
t_pk_loc[i] = []
peak_tdiff[i] = []
t_pk_loc[:] = [x for x in t_pk_loc if x]
peak_tdiff[:] = [x for x in peak_tdiff if x]
P_peaks = np.delete(P_peaks,idx_del)
fig, ax = plt.subplots()
ax.plot(time,pressure[:,-1]/1333.22,'b')
ax.plot(t_pk_loc, P_peaks/1333.22, "or",label='peak location')
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
title='Pressure at last outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
# plt.show()
plt.savefig(save_path + '/Pressure_max_n_cycles.pdf')
return (floor(mean(peak_tdiff)*1000)/1000,len(t_pk_loc))
2020-07-17 05:33:48 +01:00
def error_plot(folder,t_step,r_criteria,save_path):
# Load iterations and residual error
histor = folder + '/histor.dat'
input = open(histor, 'r')
output = open(folder + "/histor_better.dat", 'w')
output.writelines(line.strip() +'\n' for line in input)
input.close()
output.close()
error_info = pd.read_csv(folder + "/histor_better.dat", sep=' ', header=None, usecols=(0,1,2))
# Select only last iteration of residual error
error=[]
for n in range(1,error_info.shape[0]):
if (error_info[0][n]>error_info[0][n-1]):
error.append(error_info[2][n-1])
time = np.linspace(start = t_step, stop = len(error)*t_step, num = len(error))
2020-07-17 05:33:48 +01:00
# Liniar Scale
fig, ax = plt.subplots()
ax.plot(time,error)
ax.plot(time,r_criteria*np.ones(len(error)),'r')
ax.set(xlabel='Time steps', ylabel='Residual error',
title='Last nonlinear residual error for each time step')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/Last_nonlin_res_error.pdf')
# Semilog scale
2020-07-17 05:33:48 +01:00
fig, ax = plt.subplots()
ax.semilogy(time,error)
ax.semilogy(time,r_criteria*np.ones(len(error)),'r')
ax.set(xlabel='Time steps', ylabel='Residual error',
title='Log - Last nonlinear residual error for each time step')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/Log_Last_nonlin_res_error.pdf')
fig.savefig(save_path + '/Log_Last_nonlin_res_error.jpg',dpi=150)
2020-07-17 05:33:48 +01:00
def periodicity(project,folder,dt,T_cyc,n_cyc,save_path):
pressure = np.loadtxt(folder+'/PHistRCR.dat',skiprows=2,)
time = np.linspace(0,T_cyc*n_cyc,round(T_cyc/dt*n_cyc))
peak_P = []
peak_P_pos = []
Nc = round(T_cyc/dt)
for i in range(0,n_cyc):
peak_P.append(np.amax(pressure[i*Nc:Nc*(i+1),-1])/1333.22)
peak_P_pos.append(np.where(pressure[i*Nc:Nc*(i+1),-1] == np.amax(pressure[i*Nc:Nc*(i+1),-1]))[0][0]+Nc*i)
peak_Pdiff = [peak_P[n]-peak_P[n-1] for n in range(1,len(peak_P))]
peak_Pdiff = list(map(abs, peak_Pdiff))
fig, ax = plt.subplots()
2020-07-17 05:33:48 +01:00
ax.plot(time,pressure[:,-1]/1333.22,'b')
ax.plot(time[peak_P_pos], peak_P,'ro',label='Cylce pike')
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
2020-07-17 05:33:48 +01:00
title='Pressure at last outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/periodicity.pdf')
fig.savefig(save_path + '/periodicity.jpg',dpi=150)
2020-07-17 05:33:48 +01:00
if (peak_Pdiff[-1]<=1):
print('The numerical simulation \'{0}\' has achieve periodicity!\nSystolic Blood Pressure (SBP):\nsecond-last cycle = {1:.2f} mmHg,\nlast cycle = {2:.2f} mmHg,\n\u0394mmHg = {3:.2f} mmHg'.format(project,peak_P[-2],peak_P[-1],peak_Pdiff[-1]))
2020-07-17 14:44:29 +01:00
txt = ['The numerical simulation \'{0}\' has achieved periodicity.'.format(project), 'Systolic Blood Pressure (SBP):', 'Second-last cycle = {0:.2f} mmHg'.format(peak_P[-2]), 'Last cycle = {0:.2f} mmHg'.format(peak_P[-1]), 'Delta_mmHg = {0:.2f} mmHg'.format(peak_Pdiff[-1])]
2020-07-17 05:33:48 +01:00
return txt
def pressure(folder,N_ts,T_cyc,dt,n_cyc,save_path):
2020-07-17 02:02:02 +01:00
pressure = np.loadtxt(folder+'/PHistRCR.dat',skiprows=2,)
Nc = round(T_cyc/dt)
time = np.linspace(0,T_cyc,Nc)
fig, ax = plt.subplots()
2020-07-17 02:30:27 +01:00
SBP = np.empty(pressure.shape[1])
DBP = np.empty(pressure.shape[1])
MBP = np.empty(pressure.shape[1])
2020-07-17 02:02:02 +01:00
for i in range(0,pressure.shape[1]):
ax.plot(time,pressure[N_ts-Nc:N_ts,i]/1333.22,label='ROI-'+str(i+2))
2020-07-17 02:30:27 +01:00
SBP[i] = (np.amax(pressure[N_ts-Nc:N_ts,i]/1333.22))
DBP[i] = (np.amin(pressure[N_ts-Nc:N_ts,i]/1333.22))
MBP[i] = (mean(pressure[N_ts-Nc:N_ts,i]/1333.22))
PP = SBP-DBP
2020-07-17 02:02:02 +01:00
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
2020-07-17 05:33:48 +01:00
title='Pressure at each outlet')
2020-07-17 02:02:02 +01:00
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/pressure.pdf')
fig.savefig(save_path + '/pressure.jpg',dpi=150)
2020-07-17 02:30:27 +01:00
return (DBP,MBP,SBP,PP)
2020-07-17 05:33:48 +01:00
def flow(folder,N_ts,T_cyc,dt,n_cyc,save_path):
flow = np.loadtxt(folder+'/QHistRCR.dat',skiprows=2,)
Nc = round(T_cyc/dt)
time = np.linspace(0,T_cyc,Nc)
fig, ax = plt.subplots()
Q = np.empty(flow.shape[1])
for i in range(0,flow.shape[1]):
ax.plot(time,flow[N_ts-Nc:N_ts,i],label='ROI-'+str(i+2))
Q[i] = (mean(flow[N_ts-Nc:N_ts,i]))
ax.set(xlabel='time [s]', ylabel='Flow [mL/s]',
2020-07-17 05:33:48 +01:00
title='Flow at each outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/flow.pdf')
fig.savefig(save_path + '/flow.jpg',dpi=150)
return Q
2020-07-17 02:30:27 +01:00
2020-07-17 05:33:48 +01:00
def inlet_flow_waveform(project_folder,t_btw_rst,N_ts,dt,T_cyc,n_cyc,save_path):
x = np.loadtxt(project_folder+'/ROI-1.flow')
t = x[:,0]
Q = -x[:,1]
Nt_pts = np.linspace(t_btw_rst,N_ts,int(N_ts/t_btw_rst))
t_pts = Nt_pts*dt
# Put all the time values on a single cardiac cylce
for n in range(len(t_pts)):
tmp=divmod(t_pts[n],T_cyc)
t_pts[n]=tmp[1]
if round(tmp[1],3) == 0:
t_pts[n]=T_cyc
# Interpolate the flow rate to obtain the location of the point
Q_pts = np.interp(t_pts, t, Q)
fig, ax = plt.subplots()
ax.plot(t, Q, 'r')
2020-07-17 05:33:48 +01:00
ax.plot(t_pts, Q_pts, 'ob',label='Time steps saved')
trans_offset = mtransforms.offset_copy(ax.transData, fig=fig,
x=-0, y=0.15, units='inches')
ax.set(xlabel='Time [s]', ylabel='Flow Rate - Q [mL/s]',
2020-07-17 05:33:48 +01:00
title='Inlet Flow Rate Waveform')
ax.set_ylim([-10, 90])
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# Adding label to the points
2020-07-17 03:34:00 +01:00
time = []
for i in range(0,np.unique(np.round(t_pts,3)).shape[0]):
time.append('$t_'+str(i+1)+'$')
for x, y, t in zip(t_pts[(-n_cyc-1):], Q_pts[(-n_cyc-1):], time):
2020-07-17 05:33:48 +01:00
plt.text(x, y, t, transform=trans_offset, fontsize=12)
ax.legend(loc=0)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/inlet_waveform.pdf')
fig.savefig(save_path + '/inlet_waveform.jpg',dpi=150)
print('{0} time steps saved, available to visualize in ParaView.'.format(np.unique(np.round(t_pts,3)).shape[0]))
txt = '{0} time steps saved, available to visualize in ParaView.'.format(np.unique(np.round(t_pts,3)).shape[0])
return txt
2020-07-17 14:44:29 +01:00
def rcr(project_folder):
rcr_lines = []
with open (project_folder + '/rcrt.dat', "rt") as myfile:
for myline in myfile:
rcr_lines.append(myline)
n_out = int((len(rcr_lines)-1)/6)
Rc_C_Rd = np.empty([n_out,3])
for i in range(0,n_out):
Rc_C_Rd[i][0] = float(rcr_lines[2+i*6][:-1])
Rc_C_Rd[i][1] = float(rcr_lines[3+i*6][:-1])
Rc_C_Rd[i][2] = float(rcr_lines[4+i*6][:-1])
return Rc_C_Rd
2020-07-17 02:02:02 +01:00