SimVascular_report_PostProcess/functions.py

187 lines
7.2 KiB
Python
Raw Normal View History

#!/usr/bin/env python
"""
Created on Thu Jul 16 15:08:27 2020
@author: Aloma Blanch
"""
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
2020-07-17 02:30:27 +01:00
from statistics import mean
2020-07-17 12:48:51 +01:00
# from scipy.signal import find_peaks
import matplotlib.transforms as mtransforms
2020-07-17 05:33:48 +01:00
def error_plot(folder,t_step,r_criteria,save_path):
# Load iterations and residual error
histor = folder + '/histor.dat'
input = open(histor, 'r')
output = open(folder + "/histor_better.dat", 'w')
output.writelines(line.strip() +'\n' for line in input)
input.close()
output.close()
error_info = pd.read_csv(folder + "/histor_better.dat", sep=' ', header=None, usecols=(0,1,2))
# Select only last iteration of residual error
error=[]
for n in range(1,error_info.shape[0]):
if (error_info[0][n]>error_info[0][n-1]):
error.append(error_info[2][n-1])
time = np.linspace(start = t_step, stop = len(error)*t_step, num = len(error))
2020-07-17 05:33:48 +01:00
# Liniar Scale
fig, ax = plt.subplots()
ax.plot(time,error)
ax.plot(time,r_criteria*np.ones(len(error)),'r')
ax.set(xlabel='Time steps', ylabel='Residual error',
title='Last nonlinear residual error for each time step')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/Last_nonlin_res_error.pdf')
# Semilog scale
2020-07-17 05:33:48 +01:00
fig, ax = plt.subplots()
ax.semilogy(time,error)
ax.semilogy(time,r_criteria*np.ones(len(error)),'r')
ax.set(xlabel='Time steps', ylabel='Residual error',
title='Log - Last nonlinear residual error for each time step')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/Log_Last_nonlin_res_error.pdf')
fig.savefig(save_path + '/Log_Last_nonlin_res_error.jpg',dpi=150)
2020-07-17 05:33:48 +01:00
def periodicity(project,folder,dt,T_cyc,n_cyc,save_path):
pressure = np.loadtxt(folder+'/PHistRCR.dat',skiprows=2,)
time = np.linspace(0,T_cyc*n_cyc,round(T_cyc/dt*n_cyc))
peak_P = []
peak_P_pos = []
Nc = round(T_cyc/dt)
for i in range(0,n_cyc):
peak_P.append(np.amax(pressure[i*Nc:Nc*(i+1),-1])/1333.22)
peak_P_pos.append(np.where(pressure[i*Nc:Nc*(i+1),-1] == np.amax(pressure[i*Nc:Nc*(i+1),-1]))[0][0]+Nc*i)
peak_Pdiff = [peak_P[n]-peak_P[n-1] for n in range(1,len(peak_P))]
peak_Pdiff = list(map(abs, peak_Pdiff))
fig, ax = plt.subplots()
2020-07-17 05:33:48 +01:00
ax.plot(time,pressure[:,-1]/1333.22,'b')
ax.plot(time[peak_P_pos], peak_P,'ro',label='Cylce pike')
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
2020-07-17 05:33:48 +01:00
title='Pressure at last outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/periodicity.pdf')
fig.savefig(save_path + '/periodicity.jpg',dpi=150)
2020-07-17 05:33:48 +01:00
if (peak_Pdiff[-1]<=1):
print('The numerical simulation \'{0}\' has achieve periodicity!\nSystolic Blood Pressure (SBP):\nsecond-last cycle = {1:.2f} mmHg,\nlast cycle = {2:.2f} mmHg,\n\u0394mmHg = {3:.2f} mmHg'.format(project,peak_P[-2],peak_P[-1],peak_Pdiff[-1]))
2020-07-17 14:44:29 +01:00
txt = ['The numerical simulation \'{0}\' has achieved periodicity.'.format(project), 'Systolic Blood Pressure (SBP):', 'Second-last cycle = {0:.2f} mmHg'.format(peak_P[-2]), 'Last cycle = {0:.2f} mmHg'.format(peak_P[-1]), 'Delta_mmHg = {0:.2f} mmHg'.format(peak_Pdiff[-1])]
2020-07-17 05:33:48 +01:00
return txt
def pressure(folder,N_ts,T_cyc,dt,n_cyc,save_path):
2020-07-17 02:02:02 +01:00
pressure = np.loadtxt(folder+'/PHistRCR.dat',skiprows=2,)
Nc = round(T_cyc/dt)
time = np.linspace(0,T_cyc,Nc)
fig, ax = plt.subplots()
2020-07-17 02:30:27 +01:00
SBP = np.empty(pressure.shape[1])
DBP = np.empty(pressure.shape[1])
MBP = np.empty(pressure.shape[1])
2020-07-17 02:02:02 +01:00
for i in range(0,pressure.shape[1]):
ax.plot(time,pressure[N_ts-Nc:N_ts,i]/1333.22,label='ROI-'+str(i+2))
2020-07-17 02:30:27 +01:00
SBP[i] = (np.amax(pressure[N_ts-Nc:N_ts,i]/1333.22))
DBP[i] = (np.amin(pressure[N_ts-Nc:N_ts,i]/1333.22))
MBP[i] = (mean(pressure[N_ts-Nc:N_ts,i]/1333.22))
PP = SBP-DBP
2020-07-17 02:02:02 +01:00
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
2020-07-17 05:33:48 +01:00
title='Pressure at each outlet')
2020-07-17 02:02:02 +01:00
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/pressure.pdf')
fig.savefig(save_path + '/pressure.jpg',dpi=150)
2020-07-17 02:30:27 +01:00
return (DBP,MBP,SBP,PP)
2020-07-17 05:33:48 +01:00
def flow(folder,N_ts,T_cyc,dt,n_cyc,save_path):
flow = np.loadtxt(folder+'/QHistRCR.dat',skiprows=2,)
Nc = round(T_cyc/dt)
time = np.linspace(0,T_cyc,Nc)
fig, ax = plt.subplots()
Q = np.empty(flow.shape[1])
for i in range(0,flow.shape[1]):
ax.plot(time,flow[N_ts-Nc:N_ts,i],label='ROI-'+str(i+2))
Q[i] = (mean(flow[N_ts-Nc:N_ts,i]))
ax.set(xlabel='time [s]', ylabel='Flow [mL/s]',
2020-07-17 05:33:48 +01:00
title='Flow at each outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/flow.pdf')
fig.savefig(save_path + '/flow.jpg',dpi=150)
return Q
2020-07-17 02:30:27 +01:00
2020-07-17 05:33:48 +01:00
def inlet_flow_waveform(project_folder,t_btw_rst,N_ts,dt,T_cyc,n_cyc,save_path):
x = np.loadtxt(project_folder+'/ROI-1.flow')
t = x[:,0]
Q = -x[:,1]
Nt_pts = np.linspace(t_btw_rst,N_ts,int(N_ts/t_btw_rst))
t_pts = Nt_pts*dt
# Put all the time values on a single cardiac cylce
for n in range(len(t_pts)):
tmp=divmod(t_pts[n],T_cyc)
t_pts[n]=tmp[1]
if round(tmp[1],3) == 0:
t_pts[n]=T_cyc
# Interpolate the flow rate to obtain the location of the point
Q_pts = np.interp(t_pts, t, Q)
fig, ax = plt.subplots()
ax.plot(t, Q, 'r')
2020-07-17 05:33:48 +01:00
ax.plot(t_pts, Q_pts, 'ob',label='Time steps saved')
trans_offset = mtransforms.offset_copy(ax.transData, fig=fig,
x=-0, y=0.15, units='inches')
ax.set(xlabel='Time [s]', ylabel='Flow Rate - Q [mL/s]',
2020-07-17 05:33:48 +01:00
title='Inlet Flow Rate Waveform')
ax.set_ylim([-10, 90])
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# Adding label to the points
2020-07-17 03:34:00 +01:00
time = []
for i in range(0,np.unique(np.round(t_pts,3)).shape[0]):
time.append('$t_'+str(i+1)+'$')
for x, y, t in zip(t_pts[(-n_cyc-1):], Q_pts[(-n_cyc-1):], time):
2020-07-17 05:33:48 +01:00
plt.text(x, y, t, transform=trans_offset, fontsize=12)
ax.legend(loc=0)
2020-07-17 12:48:51 +01:00
# plt.show()
2020-07-17 05:33:48 +01:00
plt.savefig(save_path + '/inlet_waveform.pdf')
fig.savefig(save_path + '/inlet_waveform.jpg',dpi=150)
print('{0} time steps saved, available to visualize in ParaView.'.format(np.unique(np.round(t_pts,3)).shape[0]))
txt = '{0} time steps saved, available to visualize in ParaView.'.format(np.unique(np.round(t_pts,3)).shape[0])
return txt
2020-07-17 14:44:29 +01:00
def rcr(project_folder):
rcr_lines = []
with open (project_folder + '/rcrt.dat', "rt") as myfile:
for myline in myfile:
rcr_lines.append(myline)
n_out = int((len(rcr_lines)-1)/6)
Rc_C_Rd = np.empty([n_out,3])
for i in range(0,n_out):
Rc_C_Rd[i][0] = float(rcr_lines[2+i*6][:-1])
Rc_C_Rd[i][1] = float(rcr_lines[3+i*6][:-1])
Rc_C_Rd[i][2] = float(rcr_lines[4+i*6][:-1])
return Rc_C_Rd
2020-07-17 02:02:02 +01:00