First part of the post process script. Error and periodicity
This commit is contained in:
commit
d6416a4977
78
functions.py
Normal file
78
functions.py
Normal file
|
@ -0,0 +1,78 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.ticker as mtick
|
||||||
|
from tkinter import Tk
|
||||||
|
from tkinter.filedialog import askopenfilename, asksaveasfile, askdirectory
|
||||||
|
import pandas as pd
|
||||||
|
import tkinter as tk
|
||||||
|
from scipy.signal import find_peaks
|
||||||
|
|
||||||
|
|
||||||
|
def error_plot(folder,t_step,r_criteria,save):
|
||||||
|
# Load iterations and residual error
|
||||||
|
histor = folder + '/histor.dat'
|
||||||
|
input = open(histor, 'r')
|
||||||
|
output = open(folder + "/histor_better.dat", 'w')
|
||||||
|
output.writelines(line.strip() +'\n' for line in input)
|
||||||
|
input.close()
|
||||||
|
output.close()
|
||||||
|
error_info = pd.read_csv(folder + "/histor_better.dat", sep=' ', header=None, usecols=(0,1,2))
|
||||||
|
|
||||||
|
# Select only last iteration of residual error
|
||||||
|
error=[]
|
||||||
|
for n in range(1,error_info.shape[0]):
|
||||||
|
if (error_info[0][n]>error_info[0][n-1]):
|
||||||
|
error.append(error_info[2][n-1])
|
||||||
|
|
||||||
|
time = np.linspace(start = t_step, stop = len(error)*t_step, num = len(error))
|
||||||
|
|
||||||
|
# Plots of interest
|
||||||
|
# Liniar Scale
|
||||||
|
plt.figure()
|
||||||
|
plt.plot(time,error)
|
||||||
|
plt.plot(time,r_criteria*np.ones(len(error)),'r')
|
||||||
|
plt.ylabel('Residual error')
|
||||||
|
plt.xlabel('Time steps')
|
||||||
|
plt.title('Last nonlinear residual error for each time step')
|
||||||
|
plt.grid(True)
|
||||||
|
if save: plt.savefig(plt_folder + case + '_Last_nonlin_res_error.pdf')
|
||||||
|
|
||||||
|
# Semilog scale
|
||||||
|
plt.figure()
|
||||||
|
plt.semilogy(time,error)
|
||||||
|
plt.semilogy(time,r_criteria*np.ones(len(error)),'r:')
|
||||||
|
plt.ylabel('Residual error')
|
||||||
|
plt.xlabel('Time steps')
|
||||||
|
plt.title('Log - Last nonlinear residual error for each time step')
|
||||||
|
plt.grid(True)
|
||||||
|
if save: plt.savefig(plt_folder + case + '_Log_Last_nonlin_res_error.pdf')
|
||||||
|
|
||||||
|
|
||||||
|
def periodicity(project,folder,dt,T_cyc,n_cyc):
|
||||||
|
pressure = np.loadtxt(folder+'/PHistRCR.dat',skiprows=2,)
|
||||||
|
time = np.linspace(0,T_cyc*n_cyc,round(T_cyc/dt*n_cyc))
|
||||||
|
peak_P = []
|
||||||
|
peak_P_pos = []
|
||||||
|
Nc = round(T_cyc/dt)
|
||||||
|
for i in range(0,n_cyc):
|
||||||
|
peak_P.append(np.amax(pressure[i*Nc:Nc*(i+1),-1])/1333.22)
|
||||||
|
peak_P_pos.append(np.where(pressure[i*Nc:Nc*(i+1),-1] == np.amax(pressure[i*Nc:Nc*(i+1),-1]))[0][0]+Nc*i)
|
||||||
|
|
||||||
|
peak_Pdiff = [peak_P[n]-peak_P[n-1] for n in range(1,len(peak_P))]
|
||||||
|
peak_Pdiff = list(map(abs, peak_Pdiff))
|
||||||
|
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.plot(time,pressure[:,-1]/1333.22)
|
||||||
|
ax.plot(time[peak_P_pos], peak_P,'ro',label='Cylce pike')
|
||||||
|
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
|
||||||
|
title='Pressure @ last outlet')
|
||||||
|
ax.spines['right'].set_visible(False)
|
||||||
|
ax.spines['top'].set_visible(False)
|
||||||
|
ax.legend(loc=0)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
if (peak_Pdiff[-1]<=1): print('The numerical simulation \'{0}\' has achieve periodicity!\nSystolic Blood Pressure (SBP):\nsecond-last cycle = {1:.2f} mmHg,\nlast cycle = {2:.2f} mmHg,\n\u0394mmHg = {3:.2f} mmHg'.format(project,peak_P[-2],peak_P[-1],peak_Pdiff[-1]))
|
||||||
|
|
||||||
|
|
51
main.py
Normal file
51
main.py
Normal file
|
@ -0,0 +1,51 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.ticker as mtick
|
||||||
|
from tkinter import Tk
|
||||||
|
from tkinter.filedialog import askopenfilename, asksaveasfile, askdirectory
|
||||||
|
import pandas as pd
|
||||||
|
import tkinter as tk
|
||||||
|
import os.path
|
||||||
|
from scipy.signal import find_peaks_cwt
|
||||||
|
from scipy import signal
|
||||||
|
import statistics
|
||||||
|
|
||||||
|
|
||||||
|
from functions import error_plot, periodicity
|
||||||
|
|
||||||
|
# Selct dir
|
||||||
|
Tk().withdraw()
|
||||||
|
folder = askdirectory()
|
||||||
|
project_folder = os.path.dirname(folder)
|
||||||
|
project = os.path.basename(project_folder)
|
||||||
|
|
||||||
|
# Input parameters
|
||||||
|
T_cyc = 0.477
|
||||||
|
n_cyc = 5
|
||||||
|
|
||||||
|
|
||||||
|
# Read important parameters from - solver.inp file
|
||||||
|
mylines = [] # Declare an empty list named mylines.
|
||||||
|
with open (project_folder + '/solver.inp', 'rt') as myfile: # Open lorem.txt for reading text data.
|
||||||
|
for myline in myfile: # For each line, stored as myline,
|
||||||
|
mylines.append(myline) # add its contents to mylines.
|
||||||
|
# print(mylines)
|
||||||
|
|
||||||
|
|
||||||
|
# Number of Timesteps - idx 3
|
||||||
|
# Idea: remove the text to extract the number, the text part will be the same no matter the simulation
|
||||||
|
N_ts = int(mylines[3][20:-1])
|
||||||
|
|
||||||
|
# Time Step Size - idx 4
|
||||||
|
dt = float(mylines[4][16:-1])
|
||||||
|
|
||||||
|
# Residual criteria - idx 4
|
||||||
|
rc = float(mylines[26][18:-1])
|
||||||
|
|
||||||
|
# Cehcking convergency and periodicity
|
||||||
|
error_plot(folder,dt,rc,False)
|
||||||
|
periodicity(project,folder,dt,T_cyc,n_cyc)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user