SimVascular_report_PostProcess/functions.py
2020-07-17 01:16:04 -05:00

173 lines
7.1 KiB
Python

#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
from tkinter import Tk
from tkinter.filedialog import askopenfilename, asksaveasfile, askdirectory
import pandas as pd
import tkinter as tk
from statistics import mean
from scipy.signal import find_peaks
import matplotlib.transforms as mtransforms
def error_plot(folder,t_step,r_criteria,save_path):
# Load iterations and residual error
histor = folder + '/histor.dat'
input = open(histor, 'r')
output = open(folder + "/histor_better.dat", 'w')
output.writelines(line.strip() +'\n' for line in input)
input.close()
output.close()
error_info = pd.read_csv(folder + "/histor_better.dat", sep=' ', header=None, usecols=(0,1,2))
# Select only last iteration of residual error
error=[]
for n in range(1,error_info.shape[0]):
if (error_info[0][n]>error_info[0][n-1]):
error.append(error_info[2][n-1])
time = np.linspace(start = t_step, stop = len(error)*t_step, num = len(error))
# Liniar Scale
fig, ax = plt.subplots()
ax.plot(time,error)
ax.plot(time,r_criteria*np.ones(len(error)),'r')
ax.set(xlabel='Time steps', ylabel='Residual error',
title='Last nonlinear residual error for each time step')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.show()
plt.savefig(save_path + '/Last_nonlin_res_error.pdf')
# Semilog scale
fig, ax = plt.subplots()
ax.semilogy(time,error)
ax.semilogy(time,r_criteria*np.ones(len(error)),'r')
ax.set(xlabel='Time steps', ylabel='Residual error',
title='Log - Last nonlinear residual error for each time step')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.show()
plt.savefig(save_path + '/Log_Last_nonlin_res_error.pdf')
fig.savefig(save_path + '/Log_Last_nonlin_res_error.jpg',dpi=150)
def periodicity(project,folder,dt,T_cyc,n_cyc,save_path):
pressure = np.loadtxt(folder+'/PHistRCR.dat',skiprows=2,)
time = np.linspace(0,T_cyc*n_cyc,round(T_cyc/dt*n_cyc))
peak_P = []
peak_P_pos = []
Nc = round(T_cyc/dt)
for i in range(0,n_cyc):
peak_P.append(np.amax(pressure[i*Nc:Nc*(i+1),-1])/1333.22)
peak_P_pos.append(np.where(pressure[i*Nc:Nc*(i+1),-1] == np.amax(pressure[i*Nc:Nc*(i+1),-1]))[0][0]+Nc*i)
peak_Pdiff = [peak_P[n]-peak_P[n-1] for n in range(1,len(peak_P))]
peak_Pdiff = list(map(abs, peak_Pdiff))
fig, ax = plt.subplots()
ax.plot(time,pressure[:,-1]/1333.22,'b')
ax.plot(time[peak_P_pos], peak_P,'ro',label='Cylce pike')
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
title='Pressure at last outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
plt.show()
plt.savefig(save_path + '/periodicity.pdf')
fig.savefig(save_path + '/periodicity.jpg',dpi=150)
if (peak_Pdiff[-1]<=1):
print('The numerical simulation \'{0}\' has achieve periodicity!\nSystolic Blood Pressure (SBP):\nsecond-last cycle = {1:.2f} mmHg,\nlast cycle = {2:.2f} mmHg,\n\u0394mmHg = {3:.2f} mmHg'.format(project,peak_P[-2],peak_P[-1],peak_Pdiff[-1]))
# txt = ['The numerical simulation \'{0}\' has achieve periodicity!'.format(project), 'Systolic Blood Pressure (SBP):', 'Second-last cycle = {0:.2f} mmHg'.format(peak_P[-2]), 'Last cycle = {0:.2f} mmHg'.format(peak_P[-1]), 'Delta_mmHg = {0:.2f} mmHg'.format(peak_Pdiff[-1])]
txt = ['The numerical simulation \'{0}\' has achieve periodicity!'.format(project), 'Systolic Blood Pressure (SBP):','Second-last cycle = {0:.2f} mmHg - Last cycle = {1:.2f} mmHg - Delta_mmHg = {2:.2f} mmHg'.format(peak_P[-2],peak_P[-1],peak_Pdiff[-1])]
return txt
def pressure(folder,N_ts,T_cyc,dt,n_cyc,save_path):
pressure = np.loadtxt(folder+'/PHistRCR.dat',skiprows=2,)
Nc = round(T_cyc/dt)
time = np.linspace(0,T_cyc,Nc)
fig, ax = plt.subplots()
SBP = np.empty(pressure.shape[1])
DBP = np.empty(pressure.shape[1])
MBP = np.empty(pressure.shape[1])
for i in range(0,pressure.shape[1]):
ax.plot(time,pressure[N_ts-Nc:N_ts,i]/1333.22,label='ROI-'+str(i+2))
SBP[i] = (np.amax(pressure[N_ts-Nc:N_ts,i]/1333.22))
DBP[i] = (np.amin(pressure[N_ts-Nc:N_ts,i]/1333.22))
MBP[i] = (mean(pressure[N_ts-Nc:N_ts,i]/1333.22))
PP = SBP-DBP
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
title='Pressure at each outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
plt.show()
plt.savefig(save_path + '/pressure.pdf')
fig.savefig(save_path + '/pressure.jpg',dpi=150)
return (DBP,MBP,SBP,PP)
def flow(folder,N_ts,T_cyc,dt,n_cyc,save_path):
flow = np.loadtxt(folder+'/QHistRCR.dat',skiprows=2,)
Nc = round(T_cyc/dt)
time = np.linspace(0,T_cyc,Nc)
fig, ax = plt.subplots()
Q = np.empty(flow.shape[1])
for i in range(0,flow.shape[1]):
ax.plot(time,flow[N_ts-Nc:N_ts,i],label='ROI-'+str(i+2))
Q[i] = (mean(flow[N_ts-Nc:N_ts,i]))
ax.set(xlabel='time [s]', ylabel='Flow [mL/s]',
title='Flow at each outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
plt.show()
plt.savefig(save_path + '/flow.pdf')
fig.savefig(save_path + '/flow.jpg',dpi=150)
return Q
def inlet_flow_waveform(project_folder,t_btw_rst,N_ts,dt,T_cyc,n_cyc,save_path):
x = np.loadtxt(project_folder+'/ROI-1.flow')
t = x[:,0]
Q = -x[:,1]
Nt_pts = np.linspace(t_btw_rst,N_ts,int(N_ts/t_btw_rst))
t_pts = Nt_pts*dt
# Put all the time values on a single cardiac cylce
for n in range(len(t_pts)):
tmp=divmod(t_pts[n],T_cyc)
t_pts[n]=tmp[1]
if round(tmp[1],3) == 0:
t_pts[n]=T_cyc
# Interpolate the flow rate to obtain the location of the point
Q_pts = np.interp(t_pts, t, Q)
fig, ax = plt.subplots()
ax.plot(t, Q, 'r')
ax.plot(t_pts, Q_pts, 'ob',label='Time steps saved')
trans_offset = mtransforms.offset_copy(ax.transData, fig=fig,
x=-0, y=0.15, units='inches')
ax.set(xlabel='Time [s]', ylabel='Flow Rate - Q [mL/s]',
title='Inlet Flow Rate Waveform')
ax.set_ylim([-10, 90])
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# Adding label to the points
time = []
for i in range(0,np.unique(np.round(t_pts,3)).shape[0]):
time.append('$t_'+str(i+1)+'$')
for x, y, t in zip(t_pts[(-n_cyc-1):], Q_pts[(-n_cyc-1):], time):
plt.text(x, y, t, transform=trans_offset, fontsize=12)
ax.legend(loc=0)
plt.show()
plt.savefig(save_path + '/inlet_waveform.pdf')
fig.savefig(save_path + '/inlet_waveform.jpg',dpi=150)
print('{0} time steps saved, available to visualize in ParaView.'.format(np.unique(np.round(t_pts,3)).shape[0]))
txt = '{0} time steps saved, available to visualize in ParaView.'.format(np.unique(np.round(t_pts,3)).shape[0])
return txt