185 lines
6.3 KiB
Python
185 lines
6.3 KiB
Python
#!/usr/bin/env python
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.ticker as mtick
|
|
from tkinter import Tk
|
|
from tkinter.filedialog import askopenfilename, asksaveasfile, askdirectory
|
|
import pandas as pd
|
|
import tkinter as tk
|
|
import os.path
|
|
from scipy.signal import find_peaks_cwt
|
|
from scipy import signal
|
|
import statistics
|
|
from fpdf import FPDF
|
|
|
|
|
|
from functions import error_plot, periodicity, pressure, flow, inlet_flow_waveform
|
|
|
|
# Selct dir
|
|
Tk().withdraw()
|
|
folder = askdirectory()
|
|
project_folder = os.path.dirname(folder)
|
|
project = os.path.basename(project_folder)
|
|
save_path = folder+'/'+project+'-report'
|
|
os.mkdir(save_path)
|
|
save_pdf = save_path + '/' + project + '-report.pdf'
|
|
|
|
# Input parameters
|
|
T_cyc = 0.477
|
|
n_cyc = 5
|
|
|
|
|
|
# Read important parameters from - solver.inp file
|
|
mylines = [] # Declare an empty list named mylines.
|
|
with open (project_folder + '/solver.inp', 'rt') as myfile: # Open lorem.txt for reading text data.
|
|
for myline in myfile: # For each line, stored as myline,
|
|
mylines.append(myline) # add its contents to mylines.
|
|
# Number of Timesteps - idx 3
|
|
# Idea: remove the text to extract the number, the text part will be the same no matter the simulation
|
|
N_ts = int(mylines[3][20:-1])
|
|
# Time Step Size - idx 4
|
|
dt = float(mylines[4][16:-1])
|
|
# Residual criteria - idx 4
|
|
rc = float(mylines[26][18:-1])
|
|
# Imesteps between Restarts - idx 6
|
|
t_btw_rst = int(mylines[6][37:-1])
|
|
|
|
# Cehcking convergency and periodicity
|
|
error_plot(folder,dt,rc,save_path)
|
|
txt1 = periodicity(project,folder,dt,T_cyc,n_cyc,save_path)
|
|
|
|
# Pressure - Outlets
|
|
(DBP,MBP,SBP,PP) = pressure(folder,N_ts,T_cyc,dt,n_cyc,save_path)
|
|
|
|
# Flow Rate - Outlets
|
|
(Q_avg) = flow(folder,N_ts,T_cyc,dt,n_cyc,save_path)
|
|
|
|
# Inlet Flow Rate + and t saved
|
|
txt2 = inlet_flow_waveform(project_folder,t_btw_rst,N_ts,dt,T_cyc,n_cyc,save_path)
|
|
|
|
|
|
# # Create PDF report
|
|
class PDF(FPDF):
|
|
def header(self):
|
|
# Arial bold 15
|
|
self.set_font('Times', 'B', 15)
|
|
# Calculate width of title and position
|
|
w = self.get_string_width(title) + 6
|
|
self.set_x((210 - w) / 2)
|
|
# Colors of frame, background and text
|
|
self.set_draw_color(211, 84, 0 )
|
|
self.set_fill_color(249, 231, 159)
|
|
self.set_text_color(40, 116, 166)
|
|
# Thickness of frame (0.2 mm)
|
|
self.set_line_width(0.2)
|
|
# Title
|
|
self.cell(w, 9, title, 1, 1, 'C', 1)
|
|
# Line break
|
|
self.ln(10)
|
|
|
|
def footer(self):
|
|
# Position at 1.5 cm from bottom
|
|
self.set_y(-15)
|
|
# Arial italic 8
|
|
self.set_font('Times', 'I', 8)
|
|
# Text color in gray
|
|
self.set_text_color(128)
|
|
# Page number
|
|
self.cell(0, 10, 'Page ' + str(self.page_no()), 0, 0, 'C')
|
|
|
|
def chapter_title(self, num, label):
|
|
# Arial 12
|
|
self.set_font('Times', '', 12)
|
|
# Background color
|
|
self.set_fill_color(200, 220, 255)
|
|
# Title
|
|
self.cell(0, 6, 'Chapter %d : %s' % (num, label), 0, 1, 'L', 1)
|
|
# Line break
|
|
self.ln(4)
|
|
|
|
def section_title(self, num, label):
|
|
# Arial 12
|
|
self.set_font('Times', '', 12)
|
|
# Background color
|
|
self.set_fill_color(232, 248, 245)
|
|
# Title
|
|
self.cell(0, 6, 'Section %d : %s' % (num, label), 0, 1, 'L', 1)
|
|
# Line break
|
|
self.ln(4)
|
|
|
|
def chapter_body(self, name):
|
|
# Read text file
|
|
with open(name, 'rb') as fh:
|
|
txt = fh.read().decode('latin-1')
|
|
# Times 12
|
|
self.set_font('Times', '', 12)
|
|
# Output justified text
|
|
self.multi_cell(0, 5, txt)
|
|
# Line break
|
|
self.ln()
|
|
# Mention in italics
|
|
self.set_font('', 'I')
|
|
self.cell(0, 5, '(end of excerpt)')
|
|
|
|
def print_chapter(self, num, title, name):
|
|
self.add_page()
|
|
self.chapter_title(num, title)
|
|
self.chapter_body(name)
|
|
|
|
def print_section(self, num, title):
|
|
self.add_page()
|
|
self.section_title(num, title)
|
|
|
|
title = 'Project name: '+ project
|
|
pdf = PDF()
|
|
pdf.set_title(title)
|
|
pdf.set_author('Aloma Blanch Granada')
|
|
|
|
pdf.print_section(1, 'Cehcking convergency and periodicity')
|
|
pdf.image(save_path +'/Log_Last_nonlin_res_error.jpg', x = None, y = None, w = 140, h = 100, type = '', link = '')
|
|
pdf.image(save_path +'/periodicity.jpg', x = None, y = None, w = 140, h = 100, type = '', link = '')
|
|
pdf.cell(0, 10,txt1[0], 0, 1)
|
|
pdf.cell(0, 10,txt1[1], 0, 1)
|
|
pdf.cell(0, 10,txt1[2], 0, 1)
|
|
|
|
pdf.print_section(2, 'Cehcking Pressures at each outlet')
|
|
pdf.image(save_path +'/pressure.jpg', x = None, y = None, w = 140, h = 100, type = '', link = '')
|
|
|
|
width_cell=[20,30,30,30,30,30,30];
|
|
# pfd.SetFillColor(193,229,252); # Background color of header
|
|
# Header starts
|
|
pdf.cell(width_cell[0],10,'ROI',1,0,'C') # First header column
|
|
pdf.cell(width_cell[1],10,'DBP [mmHg]',1,0,'C') # Second header column
|
|
pdf.cell(width_cell[2],10,'MBP [mmHg]',1,0,'C') # Third header column
|
|
pdf.cell(width_cell[3],10,'SBP [mmHg]',1,0,'C') # Fourth header column
|
|
pdf.cell(width_cell[4],10,'PP [mmHg]',1,1,'C') # Fourth header column
|
|
# Rows
|
|
for i in range(0,len(SBP)):
|
|
pdf.cell(width_cell[0],10,'ROI-'+ str(i+2),1,0,'C') # First column of row 1
|
|
pdf.cell(width_cell[1],10,str(round(DBP[i],2)),1,0,'C') # Second column of row 1
|
|
pdf.cell(width_cell[2],10,str(round(MBP[i],2)),1,0,'C') # Third column of row 1
|
|
pdf.cell(width_cell[3],10,str(round(SBP[i],2)),1,0,'C') # Fourth column of row 1
|
|
pdf.cell(width_cell[4],10,str(round(PP[i],2)),1,1,'C') # Fourth column of row 1
|
|
|
|
|
|
pdf.print_section(3, 'Cehcking Flow Rate at each outlet')
|
|
pdf.image(save_path +'/flow.jpg', x = None, y = None, w = 140, h = 100, type = '', link = '')
|
|
|
|
width_cell=[20,60];
|
|
# pfd.SetFillColor(193,229,252); # Background color of header
|
|
# Header starts
|
|
pdf.cell(width_cell[0],10,'ROI',1,0,'C') # First header column
|
|
pdf.cell(width_cell[1],10,'Average Flow rate [mL/s]',1,1,'C') # Second header column
|
|
# Rows
|
|
for i in range(0,len(Q_avg)):
|
|
pdf.cell(width_cell[0],10,'ROI-'+ str(i+2),1,0,'C')
|
|
pdf.cell(width_cell[1],10,str(round(Q_avg[i],2)),1,1,'C')
|
|
|
|
|
|
pdf.print_section(4, 'Cehcking Inlet Flow Waveform and time steps saved')
|
|
pdf.image(save_path +'/inlet_waveform.jpg', x = None, y = None, w = 140, h = 100, type = '', link = '')
|
|
pdf.cell(0, 10,txt2, 0, 1)
|
|
pdf.output(save_pdf, 'F')
|
|
|