SimVascular_report_PostProcess/functions.py
2020-07-24 08:22:33 -05:00

297 lines
12 KiB
Python

#!/usr/bin/env python
"""
Created on Thu Jul 16 15:08:27 2020
@author: Aloma Blanch
"""
import matplotlib
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
from math import floor
from statistics import mean
from scipy.signal import find_peaks
def cycle(folder,dt,save_path):
pressure = np.loadtxt(folder + '/PHistRCR.dat',skiprows=2)
N_ts = pressure.shape[0]
T = round(dt*N_ts,3)
time = np.linspace(0,T,N_ts)
# Find peaks, keep only the maximums
peaks, _ = find_peaks(pressure[:,-1])
idx = np.where(pressure[peaks,-1] >= np.mean(pressure))
peaks_loc = peaks[idx]
P_peaks = pressure[peaks,-1][pressure[peaks,-1] >= np.mean(pressure)]
# Rmove the multiple picks found in the same location
idx_del = []
t_pk_loc = time[peaks_loc].tolist()
peak_tdiff = [t_pk_loc[n]-t_pk_loc[n-1] for n in range(1,len(t_pk_loc))]
for i in range(0,len(peak_tdiff)):
if peak_tdiff[i]<= dt*10:
idx_del.append(i)
t_pk_loc[i] = []
peak_tdiff[i] = []
t_pk_loc[:] = [x for x in t_pk_loc if x]
peak_tdiff[:] = [x for x in peak_tdiff if x]
P_peaks = np.delete(P_peaks,idx_del)
fig, ax = plt.subplots()
ax.plot(time,pressure[:,-1]/1333.22,'b')
ax.plot(t_pk_loc, P_peaks/1333.22, "or",label='peak location')
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
title='Pressure at last outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
# plt.show()
plt.savefig(save_path + '/Pressure_max_n_cycles.pdf')
return (floor(mean(peak_tdiff[1:])*1000)/1000,len(t_pk_loc))
def error_plot(folder,t_step,r_criteria,save_path):
# Load iterations and residual error
histor = folder + '/histor.dat'
input = open(histor, 'r')
output = open(folder + "/histor_better.dat", 'w')
output.writelines(line.strip() +'\n' for line in input)
input.close()
output.close()
error_info = pd.read_csv(folder + "/histor_better.dat", sep=' ', header=None, usecols=(0,1,2))
# Select only last iteration of residual error
error=[]
for n in range(1,error_info.shape[0]):
if (error_info[0][n]>error_info[0][n-1]):
error.append(error_info[2][n-1])
time = np.linspace(start = t_step, stop = len(error)*t_step, num = len(error))
# Liniar Scale
fig, ax = plt.subplots()
ax.plot(time,error)
ax.plot(time,r_criteria*np.ones(len(error)),'r')
ax.set(xlabel='Time steps', ylabel='Residual error',
title='Last nonlinear residual error for each time step')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# plt.show()
plt.savefig(save_path + '/Last_nonlin_res_error.pdf')
# Semilog scale
fig, ax = plt.subplots()
ax.semilogy(time,error)
ax.semilogy(time,r_criteria*np.ones(len(error)),'r')
ax.set(xlabel='Time steps', ylabel='Residual error',
title='Log - Last nonlinear residual error for each time step')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# plt.show()
plt.savefig(save_path + '/Log_Last_nonlin_res_error.pdf')
fig.savefig(save_path + '/Log_Last_nonlin_res_error.jpg',dpi=150)
def periodicity(project,folder,dt,T_cyc,n_cyc,save_path):
pressure = np.loadtxt(folder+'/PHistRCR.dat',skiprows=2,)
time = np.linspace(0,T_cyc*n_cyc,round(T_cyc/dt*n_cyc))
peak_P = []
peak_P_pos = []
Nc = round(T_cyc/dt)
for i in range(0,n_cyc):
peak_P.append(np.amax(pressure[i*Nc:Nc*(i+1),-1])/1333.22)
peak_P_pos.append(np.where(pressure[i*Nc:Nc*(i+1),-1] == np.amax(pressure[i*Nc:Nc*(i+1),-1]))[0][0]+Nc*i)
peak_Pdiff = [peak_P[n]-peak_P[n-1] for n in range(1,len(peak_P))]
peak_Pdiff = list(map(abs, peak_Pdiff))
fig, ax = plt.subplots()
ax.plot(time,pressure[:,-1]/1333.22,'b')
ax.plot(time[peak_P_pos], peak_P,'ro',label='Cycle pike')
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
title='Pressure at last outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
# plt.show()
plt.savefig(save_path + '/periodicity.pdf')
fig.savefig(save_path + '/periodicity.jpg',dpi=150)
if (peak_Pdiff[-1]<=1):
print('The numerical simulation \'{0}\' has achieve periodicity!\nSystolic Blood Pressure (SBP):\nsecond-last cycle = {1:.2f} mmHg,\nlast cycle = {2:.2f} mmHg,\n\u0394mmHg = {3:.2f} mmHg'.format(project,peak_P[-2],peak_P[-1],peak_Pdiff[-1]))
txt = ['The numerical simulation \'{0}\' has achieved periodicity.'.format(project), 'Systolic Blood Pressure (SBP):', 'Second-last cycle = {0:.2f} mmHg'.format(peak_P[-2]), 'Last cycle = {0:.2f} mmHg'.format(peak_P[-1]), 'Delta_mmHg = {0:.2f} mmHg'.format(peak_Pdiff[-1])]
return txt
def pressure(folder,N_ts,T_cyc,dt,n_cyc,save_path):
pressure = np.loadtxt(folder+'/PHistRCR.dat',skiprows=2,)
Nc = round(T_cyc/dt)
time = np.linspace(0,T_cyc,Nc)
fig, ax = plt.subplots()
SBP = np.empty(pressure.shape[1])
DBP = np.empty(pressure.shape[1])
MBP = np.empty(pressure.shape[1])
for i in range(0,pressure.shape[1]):
ax.plot(time,pressure[N_ts-Nc:N_ts,i]/1333.22,label='ROI-'+str(i+2))
SBP[i] = (np.amax(pressure[N_ts-Nc:N_ts,i]/1333.22))
DBP[i] = (np.amin(pressure[N_ts-Nc:N_ts,i]/1333.22))
MBP[i] = (mean(pressure[N_ts-Nc:N_ts,i]/1333.22))
PP = SBP-DBP
ax.set(xlabel='time [s]', ylabel='Pressure [mmHg]',
title='Pressure at each outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
# plt.show()
plt.savefig(save_path + '/pressure.pdf')
fig.savefig(save_path + '/pressure.jpg',dpi=150)
return (DBP,MBP,SBP,PP)
def flow(folder,N_ts,T_cyc,dt,n_cyc,save_path):
flow = np.loadtxt(folder+'/QHistRCR.dat',skiprows=2,)
Nc = round(T_cyc/dt)
time = np.linspace(0,T_cyc,Nc)
fig, ax = plt.subplots()
Q = np.empty(flow.shape[1])
for i in range(0,flow.shape[1]):
ax.plot(time,flow[N_ts-Nc:N_ts,i],label='ROI-'+str(i+2))
Q[i] = (mean(flow[N_ts-Nc:N_ts,i]))
ax.set(xlabel='time [s]', ylabel='Flow [mL/s]',
title='Flow at each outlet')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc=0)
# plt.show()
plt.savefig(save_path + '/flow.pdf')
fig.savefig(save_path + '/flow.jpg',dpi=150)
return Q
def inlet_flow_waveform(project_folder,t_btw_rst,N_ts,dt,T_cyc,n_cyc,save_path):
x = np.loadtxt(project_folder+'/ROI-1.flow')
t = x[:,0]
Q = -x[:,1]
Nt_pts = np.linspace(t_btw_rst,N_ts,int(N_ts/t_btw_rst))
t_pts = Nt_pts*dt
# Put all the time values on a single cardiac cylce
for n in range(len(t_pts)):
tmp=divmod(t_pts[n],T_cyc)
t_pts[n]=tmp[1]
if round(tmp[1],3) == 0:
t_pts[n]=T_cyc
# Interpolate the flow rate to obtain the location of the point
Q_pts = np.interp(t_pts, t, Q)
fig, ax = plt.subplots()
ax.plot(t, Q, 'r')
ax.plot(t_pts, Q_pts, 'ob',label='Time steps saved')
trans_offset = mtransforms.offset_copy(ax.transData, fig=fig,
x=-0, y=0.15, units='inches')
ax.set(xlabel='Time [s]', ylabel='Flow Rate - Q [mL/s]',
title='Inlet Flow Rate Waveform')
ax.set_ylim([-10, 90])
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# Adding label to the points
time = []
for i in range(0,np.unique(np.round(t_pts,3)).shape[0]):
time.append('$t_'+str(i+1)+'$')
for x, y, t in zip(t_pts[(-n_cyc-1):], Q_pts[(-n_cyc-1):], time):
plt.text(x, y, t, transform=trans_offset, fontsize=12)
ax.legend(loc=0)
# plt.show()
plt.savefig(save_path + '/inlet_waveform.pdf')
fig.savefig(save_path + '/inlet_waveform.jpg',dpi=150)
print('{0} time steps saved, available to visualize in ParaView.'.format(np.unique(np.round(t_pts,3)).shape[0]))
txt = '{0} time steps saved, available to visualize in ParaView.'.format(np.unique(np.round(t_pts,3)).shape[0])
return txt
def rcr(project_folder):
rcr_lines = []
with open (project_folder + '/rcrt.dat', "rt") as myfile:
for myline in myfile:
rcr_lines.append(myline)
n_out = int((len(rcr_lines)-1)/6)
Rc_C_Rd = np.empty([n_out,3])
for i in range(0,n_out):
Rc_C_Rd[i][0] = float(rcr_lines[2+i*6][:-1])
Rc_C_Rd[i][1] = float(rcr_lines[3+i*6][:-1])
Rc_C_Rd[i][2] = float(rcr_lines[4+i*6][:-1])
return Rc_C_Rd
def barPlot(project_folder,DBP,MBP,SBP,PP,Q_avg,save_path):
aimed_all = [1] #No li agrada fer append en una llista buida, no recordo perquè i segur que es pot fer millor
f = open(project_folder+'/aimed.txt', 'r') #obrir el fitxer
for line in f:
aimed_all = line.split() #fas una llista amb cada valor de la línia carregan-te els espais buits
del aimed_all[0] #esborrar el primer valor que has posat perquè no estigues buida la llista
def plot_bar(CFD,aimed,name,save_path,unit):
labels = []
for i in range(0,len(CFD)):
labels.append('ROI-'+str(i+2))
x = np.arange(len(labels)) # the label locations
width = 0.38 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, CFD, width, label='CFD',color='k')
rects2 = ax.bar(x + width/2, aimed, width, label='Aimed',color='white', edgecolor='black', hatch='/')
ax.set_ylabel(name + unit)
ax.set_title(name)
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
high = max(max(aimed,CFD))
ax.set_ylim(top = 1.7*high)
def autolabel(rects):
"""Attach a text label above each bar in *rects*, displaying its height."""
for rect in rects:
height = rect.get_height()
ax.annotate('{}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0,3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom',
fontsize = 7.5)
autolabel(rects1)
autolabel(rects2)
# Create labels
err = []
zip_object = zip(CFD, aimed)
for x1_i, x2_i in zip_object:
err.append(round((x1_i-x2_i)/x2_i*100,2))
# Text on the top of each barplot
for i in range(len(x)):
plt.text(x = x[i]- width/2, y = max(CFD[i],aimed[i])+0.15*max(max(CFD,aimed)), s = str(err[i])+'%', fontsize = 8, color='r')
fig.tight_layout()
# plt.show()
plt.savefig(save_path + '/'+name+'_bar.pdf')
fig.savefig(save_path + '/'+name+'_bar.jpg',dpi=150)
# DBP
CFD = [round(float(i),1) for i in DBP]
aimed = [round(float(i),1) for i in aimed_all[0]]
plot_bar(CFD,aimed,'DBP',save_path,' [mmHg]')
# MBP
CFD = [round(float(i),1) for i in MBP]
aimed = [round(float(i),1) for i in aimed_all[1]]
plot_bar(CFD,aimed,'MBP',save_path,' [mmHg]')
# SBP
CFD = [round(float(i),1) for i in SBP]
aimed = [round(float(i),1) for i in aimed_all[2]]
plot_bar(CFD,aimed,'SBP',save_path,' [mmHg]')
# PP
CFD = [round(float(i),1) for i in PP]
aimed = [round(float(i),1) for i in aimed_all[3]]
plot_bar(CFD,aimed,'PP',save_path,' [mmHg]')
# DBP
CFD = [round(float(i),1) for i in Q_avg]
aimed = [round(float(i),1) for i in aimed_all[4]]
plot_bar(CFD,aimed,'Q_avg',save_path,' [mL/s]')